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The effect of a time-dependent flow in an oscillatory chemical system supporting front propagation is
studied. Resonant target patterns depend on the strength and frequency of the time-dependent flow. The flow
time scale needed to entrain the system to the resonant target period of oscillation depends on the closeness to
the natural oscillation frequency of the medium. The flow strength needed to obtain these patterns is interpreted
in terms of mixing optimization, and we give conditions for the flow that guarantee the best mixing with the
Bernoulli property.
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Spatiotemporal pattern formation has attracted the atten-
tion of researchers since long ago. However, the combined
effects of reaction, diffusion, and advection have recently
become an area of active research. This occurs especially in
chemical reactions in a fluid environment �1�, combustion
systems in the presence of chaotic stirring by a laminar flow
�2�, dynamics of oceanic plankton populations �3�, conver-
sion of pollutants in the atmosphere �4�, the depletion of the
ozone layer �5�, chaotic mixing in excitable media �6�, or
mixing of non-Newtonian fluids �7�, to cite only some ex-
amples of the wide variety of industrial, theoretical, and en-
vironmental problems where reaction-advection-diffusion
systems are relevant.

To date, many theoretical �8� and experimental �9� works
have been written describing the effects of stirring in oscil-
latory chemical reactions. These effects manifest themselves
as changes in the oscillatory period and amplitude, and even
in the cessation or reappearance of oscillations. However, in
spatiotemporal oscillatory media, the effects of mixing have
not been investigated in detail �10�. The time scale of diffu-
sive transport on macroscopic length scales is typically much
longer than the characteristic time scale of the oscillations. A
reaction-diffusion system forced by a time-dependent flow
entrains to the forcing for certain values of the perturbation
frequency and strength of the flow, then favoring resonant
conditions that could not be achieved in classical reaction-
diffusion problems. Although the entrainment phenomena
are observed in a wide range of biological, chemical, and
physical systems �11�, as far as we know, this behavior has
not been observed in reaction-advection-diffusion systems. It
is often assumed that increasing stirring leads to spatial ho-
mogenization, but we will show that for time-dependent
flows this resonant condition leads to regular pattern forma-
tion, even when mixing is increased.

The aim of this paper is to study the spatiotemporal pat-
tern formation in a system driven by a nonlinear chemical
dynamics corresponding to an oscillatory chemical reaction
coupled with diffusion and advection. The advective flow
used in this paper corresponds to two alternatively rotating
point vortices, also called blinking vortex flow �12�. For spe-

cific values of the blinking period and the distance between
vortices, the medium is entrained to the forcing and a coher-
ent resonant regular structure �target patterns �13�� develops.
We will show, both numerically and theoretically, the exis-
tence of a minimum distance between the blinking vortices
in order to obtain a regular pattern. For that purpose, we will
use a mathematical result on mixing in flows that could be
represented in terms of linked twist maps that have the Ber-
noulli property �14,15�.

The model used in this paper is

�C

�t
+ �V · ��C = F�C� + D�2C . �1�

Here C= �Cu ,Cv�, F= �1− �B+1�Cu+ACu
2Cv ,BCu−ACu

2Cv�
�A ,B�0, Brusselator kinetics� �16� and the diffusion matrix
is diagonal with coefficients �Du ,Dv�. The velocity flow V
consists of two corotating point vortices separated by a fixed
distance 2b �0�b�N /2, N size of the medium�, that blink
on and off periodically with a constant period T. The velocity
field is assumed to be independent of the concentration vec-
tor C. This flow can be described by the following set of
equations in Cartesian coordinates:

Vx = −
�y

xs
2 + y2 , Vy =

�xs

xs
2 + y2 , �2�

where � is the flow circulation and

xs = �x + b , 0 � t � T/2

x − b , T/2 � t � T
� . �3�

The blinking period T can be characterized by the nondi-
mensional number �=�T /b2. Increasing the flow strength �
leads to a chaotic flow above some critical value �c �14�.
Another important feature to explain the results below is that
independently of the � value, the flow remains bounded �i.e.,
chemical species are not attracted into the flow from larger
distances�. Besides, mixing efficiency increases with � for
the range of values used here �14�.

The reaction-advection-diffusion problem was integrated
on a N�N square lattice using an implicit method for advec-
tion and diffusion �spatial step size �=1� with a fourth-order
Runge-Kutta with time step �t=0.001 for the time integra-
tion of the local chemical dynamics. Zero flux boundary con-*Electronic address: vicente.perez@cesga.es
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ditions are imposed for the concentration gradients. Random
initial conditions are set for the concentration field, and the
flow is switched on at t=0. In the absence of advection, the
resulting pattern is an ensemble of spiral waves interacting
among them, with a natural wave period Tspiral�6 t.u.
�where t.u. denotes time units�. The model �1�–�3� is inves-
tigated for different flow strengths �, by varying indepen-
dently either b, T, or �. The influence of the diffusion on the
obtained results is also studied.

The effect of the blinking vortex flow on the chemically
oscillatory medium described by the Brusselator kinetics is
shown in the upper sequence of pictures in Fig. 1. As the
vortex distance b increases �keeping constant T and ��, the
resulting pattern moves from an ensemble of interacting spi-
ral waves �equivalent to those obtained without advection� to
a coherent structure consisting of two targets centered on the
vortices position whose period of wave emission is equal to
the blinking period T. Waves are emitted alternatively from
the left and right positions with a time delay equal to T /2.
These coherent-regular structures remain unchanged for
larger values of b above some minimum value bmin. For
smaller values of b, targets compete with spiral waves.

The lower sequence of images in Fig. 1 summarizes in
terms of period histograms the results shown in the upper
panels. At low values of b, the period histogram is wide,
indicating poor correlation between separate regions in the
system. This histogram does not change appreciably until
reaching the minimum distance between vortices needed to
get the target regular pattern, bmin. Near the threshold, the
histogram shows that most points in the domain oscillate
with the same frequency �corresponding to the target wave
emission�, although some peaks to the left and right of the
main peak indicate that target patterns have not yet domi-
nated all of the medium, as some spiral waves still survive
and compete with them for free space. After the threshold,
both targets are the only patterns in the domain with a wave
period equal to the blinking period T.

Figure 2 shows the evolution of the mean wavelength as
the vortices distance b is increased. The transition to a regu-
lar target wave pattern is smooth, changing from an approxi-

mate constant value corresponding to the case without target
waves in the medium, but with multiple rotating spiral
waves, to a higher constant wavelength after the threshold is
crossed �b�bmin�.

The effect of the remainder parameters in order to obtain
a regular structure with wave period T is analyzed in Fig. 3
for two values of the diffusion coefficient Du and two do-
main sizes N. Data points in the figure correspond to values
of � for which there exists a minimum value of b, bmin;
above it, regular target patterns can be obtained. For lower
values of �, outside of this range, the active medium is not
disturbed by the advective flow, spiral waves are the domi-
nant patterns, and no value of b leads to target pattern for-
mation. On the other hand, for larger values of � than those
shown in both graphs in Fig. 3, bmin remains constant and,
for b�bmin, wave fronts are broken by successive stretching
and folding due to the hydrodynamics giving rise to free
ends and then to spiral waves.

In order to obtain a coherent regular structure, for inter-
mediate values of the vortex circulation �, smaller values of
the vortices distance are needed. Following the curve bmin���
until reaching its minimum value, the flow strength � in-
creases; thus, the area of the medium that is affected by both
vortices �i.e., chemical species can be attracted toward the
vortices in that area�, also increases. Vortices do not need to

FIG. 1. �Color online� Sequence of Cu spatial fields �upper row� and their corresponding wave period histograms �lower row� for different
values of the distance between vortices b in the blinking flow. Note the formation of two target waves that progressively fill the medium as
b is increased. Mean wave periods �units of time� were calculated at each grid point and their distribution shown in terms of a histogram.
From left to right; b=22, b=34, b=36, b=38, and b=48, respectively. The value of bmin=42 was obtained by a numerical procedure that
detects single-valued peaks. Set of parameters: A=1, B=3, Du=0.5, Dv=0, N=160, �=24, and T=6 t.u.

FIG. 2. Mean wavelength as a function of the distance between
vortices b. Wavelengths are measured directly from the spatial Cu

field with Fourier transform, and finally, a time average is done.
Parameters as in Fig. 1.
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be as separated as for lower values of � in order to obtain the
target patterns. Note that for b�bmin, for any �, targets origi-
nated at the vortices centers cannot develop completely and
interact with existing spiral waves. bmin

c is the minimum bmin
value in both graphs in Fig. 3 that changes with the size of
the domain and the diffusion. bmin

c is attained for larger val-
ues of � as Du is increased. Spiral waves drift outside the
domain, pushed by the higher-frequency target waves, faster
with decreasing diffusion �17�. Then, it is expected that
larger flow circulations should be needed in order to get only
target waves in the medium when diffusion is increased. In
other words, by increasing the flow strength �mixing effi-
ciency�, larger vortex circulations are needed to obtain only
target waves with the highest frequency of the medium.

For a range of blinking periods T±	�6±0.6 t.u., close
to the natural period Tspiral the active medium is able to
match its frequency to the periodic flow. Blinking periods
outside of this range were not able to entrain the system to
the forcing, and target patterns were not obtained for any
value of b or �. Larger values of B in the Brusselator model
require different ranges of blinking periods, and similar
qualitative results were obtained �not shown here�.

The existence of bmin
c can be related to the optimization of

mixing in a two-dimensional �2D� flow described by Wig-
gins and Ottino �15�. Their argument stresses the necessary
and sufficient conditions that lead to the best mixing. The
key point was to define a 2D bounded time-dependent flow
in a domain with solid boundaries and two transversally in-
tersecting annuli in each half cycle. Their annuli, with inner
and outer radii, ri and ro, respectively, should verify that

ri − b � 0, ri + 2b � ro �4�

to ensure that the inner and outer circles of both annuli �cen-
tered on the positions of both vortices� intersect transversely.
Besides, Wiggins and Ottino force the outer circles of the
annuli to not protude outside of the domain,

b + ro �
N

2
. �5�

Nevertheless, this condition does not allow the corners of the
medium to be well mixed, as mixing is Bernoulli defined
only on the union of the two annuli �A1�A2�. For the best
case, only a fraction of the domain �78%� is well mixed �15�.
In our case, vortices should be able to influence the whole
domain, including the corners, to guarantee the target pat-

terns originated at the vortices position to spread along the
domain, i.e., mixing should occur all along the domain area.
Then, we relax the last condition �5� as

ro
2 �

N2

4
+ b2, �6�

i.e., the outer circles intersect outside the domain, far enough
to guarantee the union of both annuli to cover the whole
domain �A1�A2�N2�. Thus, following Wiggins and Ottino
�15�, we obtain the minimum distance between vortices that
ensure all the domain to be well mixed

b

N
�

1

2	8
. �7�

The mathematical results presented here apply to a given pair
of annuli, one in each half cycle of the advection cycle, on
which the hypotheses above are satisfied. The dashed line in
Fig. 4 corresponds to the minimum b value of Eq. �7� for
different N, while the dotted-dashed line corresponds to the
optimal region of mixing b�N /8 obtained by Wiggins and
Ottino �15�. Data points were obtained by fitting the numeri-
cal data in Fig. 3 to a Gaussian curve for different diffusion
coefficients and medium sizes. For small medium sizes, the
match between theory and numerical data is within the fitting
error, while for large media, bmin

c is smaller than the theoreti-
cally predicted value �7�, but still larger than Wiggins and
Ottino’s value.

We expect our results to be characteristic for a broad
range of time-dependent chemical flows with oscillatory ki-

FIG. 3. �Color online� Mini-
mum distance between vortices
bmin as a function of the vortex
circulation � for two different val-
ues of the diffusion coefficient Du.
Dashed lines follow from Eq. �7�.
Triangles and circles correspond
to N=120 and N=80, respectively.
Rest of parameters as in Fig. 1.

FIG. 4. �Color online� bmin
c as a function of the lattice size N.

Triangles and circles correspond to Du=1.0 and Du=0.5, respec-
tively. Dashed line follows from Eq. �7� and dotted-dashed line
corresponds to the optimal region of mixing b�N /8 obtained by
Wiggins and Ottino �15�. Rest of parameters as in Fig. 1.
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netics. Time-dependent flows are a necessary condition for
chaotic advection, and this is known to enlarge mixing in
unsteady laminar flows �14�. However, boundary conditions
and the time scale introduced by the flow �similar to the
natural period of oscillation of the active media� have been
shown to be responsible for the formation of target waves.
Like entrainment phenomena in nonlinear oscillators, for an
adequate set of parameters of the flow, increasing the mixing
efficiency can lead to regular periodic pattern formation. In
this sense, a single vortex �T→ 
 � could not force the sys-
tem to target wave formation as the necessary condition of

periodicity is not fulfilled. Hopefully, this entrainment phe-
nomenon, observed experimentally in reaction-advection-
diffusion systems, could be used for controlling the dynam-
ics of oscillatory systems under stirring.
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